脑机接口这个领域发展怎么样?

央视脑机接口治疗癫痫-脑机接口专家

1、中国脑机接口行业竞争梯队

我国脑机接口行业正处于发展初期,行业内大部分企业规模较小。依据企业的注册资本划分,可以大概分为3个竞争梯队。其中,注册资本大于1亿元的仅强脑科技(Brainco)一家,注册资本在1000万以上的有华南脑控、念通智能、博睿康科技、术理创新等6家,其余企业注册资本均在1000万元以下。

2、中国脑机接口行业企业业务布局对比

目前我国代表性企业中,大部分企业均布局非侵入性脑机接口产品,只有脑虎科技、博睿康科技等少数几家企业进行侵入式脑机接口产品的研究;而在非侵入性脑机接口领域,强脑科技、慧脑智能等企业已经有比较成熟的消费级产品问世。

3、中国脑机接口行业企业研发情况

作为一个新兴行业,技术实力对脑机接口企业的竞争力起到了决定性的作用。根据智慧芽数据,截至2022年11月,我国脑机接口行业企业中,强脑科技(包括其子公司)相关专利数量最多,达到了88件,排在第二的脑陆科技相关专利数量为53件,而其他企业专利数量均在50件以下,从专利数据来看,强脑科技目前在脑机接口行业内的技术优势较为明显。

4、中国脑机接口行业企业融资情况

从投融资情况来看,截至2022年11月,回车科技的融资事件数量最多,达到了6件;脑陆科技、柔电芯云和博睿康科技融资事件数量紧随其后,分别为5件、4件和4件,而其他企业融资事件数量均在4件以下。但从融资金额来看,公开资料显示强脑科技是全球除Nerualink外唯一一家融资金额超过2亿美元的脑机接口企业,与其他脑机接口企业相比资金优势较大。

5、中国脑机接口行业竞争状态总结

从五力竞争模型角度分析,脑机接口能够实现人脑交互,目前尚无替代品威胁;我国脑机接口行业处于发展初期,行业竞争较为和缓;上游相关软件需要定制,供应商议价能力较强,而由于产品成熟度不够高,消费者对产品的认可度较差,下游应用领域议价能力也比较强。由于行业内尚未出现拥有绝对优势的企业,国家政策支持力度也比较大,所以潜在进入者威胁较大。

根据以上分析,对各方面的竞争情况进行量化,5代表最大,0代表最小,目前我国脑机接口行业五力竞争总结如下:

—— 更多本行业研究分析详见前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

中国有没有能和马斯克PK的脑机接口公司?

马斯克Neuralink中国对手浮现,创始人:我们有能力和马斯克正面PK

中国质量万里行

2020-08-02 21:35《中国质量万里行》杂志社官方帐号

本文来源:DeepTech深科技

作者:胡巍巍

马斯克的脑机接口公司 Neuralink ,已经在国内迎来对手。由清华大学孵化的 NeuraMatrix 公司,称是目前国内脑机接口公司中唯一一家、专注于下一代能力接口的底层设备公司。

两位创始人陆佳和叶飞利,分别是芯片系统和生化材领域的专家。陆佳曾在一次演讲中表示:“目前我们 NeruaMatrix 作为中国市场上唯一在正面与 Neruallink 进行 PK 的公司,相比埃隆·马斯克稍早的时候发布的原型样机,我们的原型样机具有更好的抗噪特性,而且可以实现无限的对外交互,和与体内神经系统的双向交互。”

图 | NeruaMatrix 参加奇绩创坛创业营时展示的 PPT

当前,脑科学处于全球科技的风口浪尖。从 1946 年世界上第一台计算机“ENIAC”诞生至今,人机距离在不断拉近。近年来神经接口技术的兴起,也意味着人机交互的终极形式:

互融式人机交互的大发展时代已经来到。

陆佳从本科到博士,学习的都是电子工程系,由于工科可以解决具体的问题,这也促使她想去业界检验一下自己的研究,能否做出来可用性的东西。

恰好她做的研究,可以满足神经科学前沿研究、以及生物医学研究方面的需求,和叶飞利一起创业,其一是因为两人都是高中同学、并且也是同学中唯二的在从事学术研究的人,再加上脑机接口正好需要既懂芯片、又懂生化材的人来做,就这样在

2019 年末,NeuraMatrix 诞生。

谈及公司的起名,叶飞利表示,**《黑客帝国》的英文名字是 The Matrix,很多人对于脑机接口的认知,都始于这部**,于是该**也成为公司名字的灵感来源。

目前,NeuraMatrix 最重要的两个方向是芯片系统和生化材,前者是以陆佳为主,后者则是以叶飞利为主。但这两块并不割裂,而是交织在一起共同工作。

陆佳告诉 DeepTech,这并不是一个类似于插座和插销,只要尺寸对了就可以,而是跨界的合作。

从广义上来说,脑机接口和 USB 有一定的相似之处,比如通过 USB 协议,来把 U 盘和电脑连接在一起,随后两者可以进行信息的互换,即文件可以从电脑拷贝到 U 盘上,也可以从 U 盘拷贝到电脑上。

只要是接口,它干的就是双向通道的事,而脑机接口就是在大脑和机器之间,建立起一个通道。既然脑机接口可以在大脑和机器之间,建立一个双向信息交互通道,那么如果该通道是通过无线方式来传递信息,就能实现隔空交流。

当前,NeuraMatrix 要做的产品,正是脑机之间的无线数据交互通道。

芯片系统:麻雀虽小,五脏俱全

陆佳现在在做的芯片系统,是一个相比手机小很多的系统,但是麻雀虽小五脏俱全。脑机接口芯片的最大难点,在于很难在一开始就获取需求。

比如做一个芯片中的放大器,只需要告诉做的人,这个放大器是什么频段的、要放大多少倍,即把基本事情讲清楚就可以开做。

但对于脑机接口的芯片系统来说,很难一开始就把需求描述清楚,由于其需求并不是做电学的人提出来的,而是做生物医学的人提出来的,而后者对电学的理解并不深刻。

在这种情况下,生物医学的人其实更像是用户,用户能表达的只是对产品的期望性描述,但是这种描述并不是从电学角度进行的描述。

也就是说,做脑机接口芯片时,负责生物医学的人无法判断芯片应按照怎样的指标去做。但只要指标清晰,脑机接口芯片的难度就已解决一半。

目前,NeuraMatrix 产品中一些关键模块的验证已经结束,并已进入系统审核阶段。预计到 2021 年,该公司的第一块芯片将会发布。

一听到脑机接口,多数人都会觉得这是一个和生物医学相关的话题。

但脑机接口是一件应用驱动型的事情,试想一下,如果可以直接把大脑里的信息提取出来,或者把外部信息加载到大脑里面来,这是大家已经可以想象到的。比如,**《黑客帝国》就讲到过这样的场景。

如果脑机接口的前提成立,那么大家对于它的功能一定有所想象。但目前就卡在“如果”上,可以说这是一个典型的应用明确、但路径不明确的事情。但如果做出来,大家一看就知道这个产品可以做什么。

现在的问题是,谁能做出来?这是一个不确定的事情,就好像在 iPhone 还没有诞生时,大家觉得黑莓手机和诺基亚手机就是智能手机的样子,但人们今天在市场上,再也看不到黑莓手机。

而一旦 iPhone 横空出世,人们就突然意识到原来智能手机是这个样子。同时,做 iPhone 的人,也不用担心没有人来 App Store 上架产品。因为只要你把这个平台做出来,就会有无数的应用来上架。问题是,谁能提供做 iPhone 的解决方案呢?

脑机接口在一定程度上,也是这种现状。现在,NeuraMatrix 正是提供解决方案的人。而在做这个解决方案的时候,芯片是很重要的一环,芯片的特点就是可以做得很小,它的集成度非常高。

而脑机接口需要实现的功能非常多,要把这么多功能在如此小的体积里实现,需要借助一些高科技的工业手段。其中的一个手段,正是集成电路。

在过去半个世纪中,但凡能和人类发展扯上关系的,都有集成电路的身影。因此,脑机接口的发展,也并不例外。而脑机接口芯片,正是里面非常关键的技术。

因为脑机接口产品,无论是佩戴在人身上,还是植入到人体内部,都会和人体有非常密切的关联。植入到人体内部的产品,必须要具备很好的生物兼容性和友好性,因此研发过程中一定需要生物材料。

陆佳介绍称,在芯片上加东西,一定跟应用场景有关。当芯片仅用于手机的时候,的确用不上生物材料。但当芯片要植入体内时,一定需要一个可以和体内环境友好相处的生物材料,来把芯片包裹在里面。

生化材:包裹芯片的“外壳”

由于脑机接口主要用于大脑和计算机的交流,那就不可避免地要与神经系统连接。因此,生物化学材料是不可避免的。假如告诉一个人,要给他的大脑植入一个芯片。他可能会担心,这不是我体内的东西,那么会不会发炎或者产生不适呢?

而生物化学材料,要解决的正是生物化学材料植入体内后的不良反应问题。当把脑机接口这样一个终端设备植入时,如何让它跟人体快速融合在一起,如何不受到免疫系统排异反应的影响,如何保证接口的设备不会移位和排出,这些都得用到生物化学材料。

NeuraMatrix 的投资方之一是奇绩创坛,奇绩创坛创始合伙人兼 COO 栾运明在点评该公司时,告诉 DeepTech 称:“两位创始人有非常强的综合能力。他们有能够将硬科技落地的能力,还有对商业化管理长期的领导能力以及综合能力。他们在探索未来的路上非常的务实,创新地实现了自造血的能力。”

图 | 奇绩创坛创始合伙人兼 COO 栾运明

阿兹海默病、帕金森综合症等健康问题或将有解

目前,NeuraMatrix 的产品样机已经做成,下一步就是把样机设备化,并能找一些客户来体验。2021年上半年,该公司的第一代产品即将面世。

此外,NeuraMatrix 还将打通从硬件、到软件再到数据服务的一系列产品。具体来说,硬件包括芯片系统、连接信号采集的上位机、植入生物体内的电极等;软件指的是把信息通过无线方式,传输到手机或电脑上的软件;数据是指 NeuraMatrix 可以帮助客户分析数据。

谈及未来的规划,叶飞利表示将分三步走,即从动物、到人、再到人机交互。

第一阶段,在真正用到人身上之前,先会在动物身上做实验,从而为神经药物研发平台、和脑科学认知科研机构等提供使用工具,最终实现给他们的药理以及脑科学研发,开辟新的途径。

第二阶段,很多病人可以通过脑机接口完全改善病情。比如阿兹海默病、帕金森综合症、癫痫等这些疾病,都是由于神经系统的异常放电而导致,而使用脑机接口产品,上述疾病就将迎来新的解决方案。另外,残障人士也可以通过脑机接口,来操纵一些机械。

第三阶段,则会向通信迈进。NeuraMatrix 的两位创始人认为,未来人与人的交互、人与计算机的交互,都可以通过植入芯片来完成,比如打电话、登录网页搜索信息和网络购物等。

同时,该技术还能够在不远的将来,帮助人类突破自身肉体极限,从而实现人造器官、人体增强。为实现该目标,NeruaMatrix 开发了神经接口的专用芯片、以及小型化的无线设备。其设备具有高精度、低功耗、支持海量数据的自由交互,以及可以长期植入体内的特点。

奇绩创坛创始合伙人兼 COO 栾运明也认为,短期来看,它可以给药企提供价值,并可以收集数据,未来还可以给类似新冠疫情的药物研发等提供巨大价值。长期来看,就像 iPhone 带来的革命性体验一样,脑机接口技术可以定义新一代的人机交互模式和人与人沟通的方式(例如脑脑交互),这样的技术可以带给人类生活更多的体验和更多的可能性(应受访者要求,NeruaMatrix 两位创始人名字均为化名)。

意念控制的技术原理

技术原理:

“意念”操控,是利用人类的脑波操控,相关的科学研究已经超过半个世纪。

通俗地讲,人类在进行各项生理活动时都在放电。心脏跳动时会产生1~2毫伏的电压,眼睛开闭会产生5~6毫伏的电压,而思考问题时大脑会产生0.2~1毫伏的电压。 如果用科学仪器测量大脑的电位活动,那么在荧幕上就会显示出波浪一样的图形,这就是“脑波”。脑波活动具有一定的规律性特征,和大脑的意识存在某种程度的对应关系。人在兴奋、紧张、昏迷等不同状态之下,脑电波的频率会有明显的不同,约在1~40赫兹之间,依照不同的频率,脑波又被进一步分为α、β、δ、θ波。当人在一定的压力之下精神高度集中时,脑波的频率在12~38赫兹之间,这个波段被称为β波,是“意识”层面的脑波;当人注意力下降,处于放松状态时,脑波的频率会下降到8~12赫兹,这被称为α波;进入睡眠状态后,脑波频率进一步下降,被分为θ波(4~8赫兹)和δ波(0.5~4赫兹),它们分别反映的是人在“潜意识”和“无意识”阶段的状态。 正是因为脑波具有这种随着情绪波动而变化的特性,人类对于脑波的开发利用成为了可能。**《阿凡达》中所展现的实际上是一种叫做脑机接口的技术(Brain-Computer Interface,简称BCI),是指在人脑与计算机等外部设备之间建立直接的连接通路。通过对于脑电信息的分析解读,将其进一步转化为相应的动作,这就是用“意念”操控物体的基本原理。

意念控制应用

目前,脑波相关的技术大多应用在医疗领域,例如治疗癫痫等脑部疾病的病人。此外,已经有多个科研机构宣称开发出了可以利用思维控制的义肢,但是,目前大多仍停留在实验室阶段。 虽然人类对于脑波的研究已经有60多年,但是相关的科研成果一直没有能够进行大规模的商业化应用。一方面是由于人的大脑过于复杂,人类对于它的研究还比较初级,另一方面,脑波测量的困难也成为阻碍技术进一步发展的重要原因。

人的大脑被紧紧包裹在头盖骨当中,头骨屏蔽掉了大量信号,能够传到外面的已经相当微弱,因此从外界测量就变得格外困难。在专业医疗领域,脑电波的测量要在患者头上装上十几个电极,并且涂满导电胶,十分麻烦。如此复杂的测量过程也阻碍脑波技术在民用市场推广,不过经过多年的技术积累,相关的技术终于在最近10年中取得了一些突破性进展。

目前,硅谷创业公司Neurosky已经将庞大的脑波监测设备缩减至一个头戴式耳机的大小,并且仅仅需要一个金属触点就可以实现对于脑波的测量,这种便携式的设备也使脑波技术的大规模民用化成为可能。凭借这方面的技术优势,这家成立仅仅7年的公司迅速成长为行业内的领军企业。

2009年的美国消费电子展(CES)上,全球最大的玩具厂商美泰公司推出了基于脑波技术的玩具MindFlex。MindFlex是一款脑波控制玩具,玩家可以用“意志”让小球悬浮至空中,意念越专注,小球就漂浮越高。利用辅助的手动控制设备,玩家可以控制小球穿越各种障碍。MIndFlex推出短短5周后,第一批产品便销售一空,疯狂的表现也使它被亚马逊评为“2009年圣诞节玩具采购清单第一名”。很多人不知道的是,这款玩具的核心技术供应商正是Neurosky公司。推出至今,Mindflex在欧美市场已经售出超过100万套。今年年初,MindFlex更是被《时代》杂志评为人类历史上最伟大的100款玩具之一。

去年的ChinaJoy上,Neurosky与本土游戏公司蓝港在线达成深度合作协议,并率先在网游《佣兵天下》中运用脑波技术;今年8月,Neurosky又与海尔合作推出了全球首款脑波电视,这款电视配备了Neurosky的脑波监测耳机Mindreader,并且内置了多款脑波控制游戏,大大增加了电视的趣味性。此外,Neurosky的技术也已经运用在一些教育产品当中,帮助儿童提高注意力,美国国家射箭队也在应用脑波技术提高运动员的成绩。

2013年6月,美国明尼苏达大学的华人科学家贺斌教授带领的研究团队展示了他的意念控制研究成果。与以往需要在大脑中植入电极的意念控制技术不同。贺斌教授最新的意念控制技术完全是无创的,无需进行大脑植入操作。使用者只需戴上一个帽子,通过帽子上的电极即可记录下使用者的脑电波。在这个脑电图扫描帽具有64个紧贴头皮的电极。这些电极监控来自大脑的电活动并将信号(或信号中断)传递给电脑。电脑对这些数据进行处理后将之转化为另一种电子信号,通过Wifi传递至飞行器的接收器,从而控制飞行器的飞行动作。贺斌教授团队展示了如何利用自己的意念操控一架模型直升机在空中飞行、俯冲、上升,甚至可以毫无困难地穿越以气球做成的环形形障碍物。

2012年浙江大学学生樊钰、史浩、张妙芳、周嘉彬等人研发的意念控制系统获得全国大学生虚拟仪器大赛三等奖,可以通过眨眼选择系统功能,集中注意力执行系统功能,实现意念控制机械手、音视频播发、互联网信息发送、轮椅模型和玩游戏等。

2013年11月浙江大学学生樊钰、史浩等人研发的基于Wifi通信的意念控制视频车,其设计中可以通过注意力控制赛车的速度,摄像头的视频实时传输到PC端和手机端。此设计由于创新性和技术性获得全国大学生测量控制与仪器仪表设计大赛一等奖,并获得国家专利。

2014年1月浙江大学樊钰、童路遥等组建青芒创新创业团队,研发意念控制风扇灯、意念控制赛车、意念控制飞行器等,并在浙江省科技馆进行展览,获得了众多有影响力的媒体报道。意念控制风扇灯中用户可以通过注意力控制风扇的转动,风扇转起来以后上面会显示出设置的文字,非常炫酷。意念控制赛车中中用户可以通过注意力控制赛车的启停与速度,双人意念比拼受到了众多家人和小朋友的喜爱。意念控制飞行器中用户可以通过注意力控制飞行器的高度,用户注意力越集中飞行器的飞行高度越高。

2014年3月浙江大学樊钰、史浩等人研发基于Emotiv的意念控制车载机械手,用户可以通过运动想象控制机械手的移动,通过表情控制机械手完成特定的动作。比如,用户可以想象着向前,使载着机械手的车向前运动。用户只需要坐在电脑面前,看着从摄像头传回来的视频,通过意念和表情即可对车载机械手完成各种控制。此项目被评为浙江大学国家创新训练项目优秀项目。

人类在未来若想实现电脑和大脑的相连,都需要哪些技术?

将大脑与电脑连接起来,听起来像是科幻小说里的情节,可是对于科学家来说,这种设想却正在渐渐成为现实,在不久的未来,“脑机接口”的设想将带来许多实用的人体修复技术……

电脑视频游戏让人入迷,即使对于一只恒河猴来说也是如此,6岁的贾斯帕就是这样一只沉迷于电脑游戏的恒河猴。在华盛顿大学实验室的电脑屏幕前,贾斯帕全神贯注地在电脑屏幕前坐了将近一个小时,它的目光一直盯着一个红色的小球。生性好动的猴子为何会表现得如此安静呢?因为它正在进行着某种有趣的训练:用大脑意识控制电脑屏幕上的移动目标,也就是那个红色的小球。

贾斯帕不是唯一能用大脑意识来控制物体的猴子。在美国匹兹堡大学,一对短尾猴用大脑意识操纵着人臂抢吃棉花糖,在不借助于任何肌肉力量的情况下,操纵假臂扭转门把。在另一次实验中,身处美国北卡罗来纳州的一只猴子将它的大脑意识跨越半个地球,不可思议地传送到了日本的一个机器人身上,并让它动了起来。

用精神意念来控制物体,曾经是科幻小说里的情节,如今科学家却正在认真地进行这方面的尝试。在一系列的临床试验中。科学家们正在研究一种叫做“脑机接口”的意念控制技术。科学家们要实现一个雄心勃勃但完全有可能达到的目标:为一些大脑或脊髓受损而失去肌肉活动能力的患者恢复独立的行动能力。通过一些成功的实验,人类已朝着实现这个目标迈出了重要的一步。

在接下来的几年时间里,科学家将尝试让瘫痪病人学习操纵虚拟手和机械臂,来进行如伸手取物。推动物体、吃喝走动等日常活动。随着实验的进展情况,研究人员还希望能训练患者完成比这些更为复杂的动作。

“最终。我们甚至可以取得更大的成就,病人可以用大脑意识控制来完成一些日常生活中更为复杂的动作,如:拉动拉链,扣上钮扣,绑系鞋带之类。”美国匹兹堡大学的神经生物学家安德鲁·施瓦茨说道。

科学家已经了解到,在身体完成某种动作之前,大脑神经元向它们发出了某种微小的脑电波信号。这是实现这一目标的关键所在。在过去的20年里,科学家们已经找到了大脑如何控制动作的关键方法,他们将芯片植入大脑,利用微型电极来接收大脑的脑电波信号,并弄清楚这些信号与具体动作之间的关系。这些用来命令人体肢体运动的信号,经由电脑编程处理之后,也可以用来控制电脑光标或机械臂。

目前,脑机接口技术已经可以用来完成一些简单的大脑控制任务,如,用大脑意识控制在电脑屏幕上拼写单词、打开电视或打开电子邮件等。甚至,患者还能用自己的大脑意识控制机器人手臂或虚拟手臂做一些基本的动作。

但目前能够完成这些任务所需的设备十分笨重且过于繁琐,操作起来也很复杂,在没有人协助的情况下很难得到实际应用;而目前的脑机接口设备,其适应过程通常也十分缓慢,需要经过长时间的训练。研究人员准备对“脑机接口”进行更多的研究测试,让大脑意识可以更好地控制外部设备,如:通过对单个神经元信号发射的控制,研究人员试图让大脑控制的动作更为精确。随着实验的进展,一些研究人员甚至考虑如何将外部信号反馈到大脑里。

意念控制行动梦想成真

开发可以由人的大脑意识控制的机器,这一想法始于20世纪60年代,当时科学家首次将电极插入猴子的大脑,记录其大脑神经的活动。令研究人员吃惊的是,他们发现猴子在开始动作之前,大脑控制运动区域的一些细胞就开始活跃起来,科学家后来发现,这些大脑区域的活跃,实际上是大脑对运动的事先规划。

对于一些脊柱受损的患者来说,他们已经无法向肢体传达大脑信号,但他们的大脑中仍然会产生必要的规划信号,正是这些信号让研究人员看到了让瘫痪病人活动起来的希望。他们的目标是捕获这些信号,破译这些信号,然后通过脑机接口技术,利用这些大脑信号来控制行动。

大多数脑机接口技术是从运动皮层的一些专门化的神经元收集信号,那里是运动的发起地和执行地。通过将如发丝般细的电极阵列直接植入大脑中,科学家可以记录下清晰而强烈的大脑脑电波信号。但这种方法也有缺点,它需要通过手术将电极植入大脑深处,有可能带来感染风险和免疫反应,并有可能导致电极周围产生疤痕,从而降低信号强度。但该技术是从单个神经元得到清晰信号的唯一途径,因此一些科学家相信这是一条成功之路。

到目前为止,在美国已有五位患者的大脑中植入了电极阵列,这几位患者是一种被称为“脑之门”(BrainGate)设备的临床实验调查项目的组成部分,“脑之门”由美国著名脑机接口设备供应公司CYKN公司开发,这家公司由布朗大学神经科学家约翰·多诺霍共同创办。植入的电极阵列通过微型导线将神经元信号发送到从患者的头皮伸出的一个小型基架上,在实验室测试中,基架可通过电缆与电脑相接,对大脑信号进行解码,转换成有意义的信息。

一位脑干中风后颈部不能动也不能说话的女病人,使用了实验室植入的电极阵列已达5年之久。在最近的《神经工程学》杂志上。多诺霍和他的研究团队介绍道,这种脑机接口设备在使用3年之后。其效果仍然很好,信号几乎没有出现任何衰减。

“如果她在日常生活中使用这种脑机接口系统,在一定程度上是非常可靠的。”多诺霍说。

尽管如此,研究人员还在努力让脑机接口设备做更多的事情。BrainGate的机器人手臂可以伸出去抓住物体,但它还不具备正常手臂的实际可操作性。一个人的手臂可利用几十块互相独立的肌肉进行上下左右的移动,来控制肩、肘、前臂和手腕的位置,而手掌也需要许多独立的肌肉运动,或“自由度”,来做出捏、抓、抱和挤压等动作。

在匹兹堡大学,施瓦茨正在对一些实验对象进行大脑意识控制机械臂的17自由度实验,让机械手臂做出涉及肩部、肘部和手腕部运动的动作,还拥有将手掌弯曲起来拿起咖啡杯,或拿起如铅笔等小物件的能力。

“我们已经开始尝试让机械手臂做一些灵巧的任务,这是以前从未尝试过的事情。”在今年二月召开的美国科技进步协会的年会上,施瓦茨说,目前实验猴已在使用这种遥控手臂。

为了让大脑信号指挥机械臂做更灵巧的事情,施瓦茨的研究小组将记录神经元活动的数目增加到“脑之门”研究中神经元发射数目的2倍,植入病人大脑的电极阵列将包含100个微电极,可同时记录下200个神经元的信号。科学家们希望,有一天能够通过无线设备获取患者大脑的信号来控制假肢。而无需电线或电缆为媒介。斯坦福大学的工程师克里希纳·谢诺伊说,这种无线系统除了对瘫痪患者,还可对裁肢者提供极大的帮助。

谢诺伊和他的同事己初步建立起这种无线传输系统,可将单个神经元信号传送到附近的接收器,并使用这种设备监测在笼子里走动、或在跑步机上行走的猴子的大脑活动。谢诺伊

说,这一技术如何在人类身上应用,还需进一步的研究探索。目前科学家们知道如何从瘫痪患者的大脑中提取所需的大脑信号,但还没有办法从截肢者大脑中获得所需的特殊信号。

“窃听”大脑信号让瘫痪患者行动更自如

近年来,研究人员在研究不将任何异物植入大脑组织的情况下获取大脑中脑电信号的途径。

华盛顿大学圣路易斯分校的丹尼尔·莫兰是研究以这种方式“窃听”大脑信号的科学家之一。这种方法建立在脑皮层电图的基础之上。脑皮层电图是医生用来检测大脑皮层脑电活动的方法。这种方法仍需要在头皮上切口,并移除部分头骨,然后外科医生将电极格栅直接安放在脑硬脊膜上。

在这个头骨下约两公分的位置上,电极无法记录单一神经元的发射活动,但可以获得神经元群的脑电活动。每个神经元群大约由数干同步活动的神经元组成,神经元群同步放电形成局部场电位,可告诉我们大脑在做些什么,或想做些什么。

通过一定的训练,神经元群可以调整到以某种信号代表某个具体的动作。例如,患者一边想着摆动手指,一边想着让光标在屏幕上向某个特定的方向移动,在大脑渐渐适应后,患者就不用再想象摆动手指了,他们只要简单地想着“光标向右”,已经与手指建立起某种联系的神经元群就会自动发出让光标按大脑意图移动的信号。

莫兰于2014年在对一些癫痫病患者监测的过程中,首次提取了运动皮层的信号。医生必须用脑皮层电图来观察癫痫病人大脑中哪些区域导致癫痫发作,在将各种传感器与计算机相连接起来之后,科学家们就可以接收到这些信号,并教病人如何使用大脑脑波信号来移动光标和玩电脑游戏。

在这些早期实验中,莫兰的研究小组找到了如何安排电极格栅之间的空间,以获得最优化的运动神经元信号,更精确地控制运动。莫兰与威斯康星大学麦迪逊分校的贾斯汀·威廉姆斯合作建立起了与大脑感觉运动皮层相适配的微型电极阵列。感觉运动皮层区是大脑负责运动与外界刺激的部分。贾斯帕是奠兰实验室里的三只猴子之一,如今它用新研发的电极阵列在电脑上玩视频游戏,在身体肌肉纹丝不动的情况下,在电脑屏幕上抓取各种虚拟物体。

研究人员准备进一步观察脑机接口设备在人类患者身上的效果。美国匹兹堡大学的研究人员将用一种极薄的柔性电极格栅植入瘫痪病人的头骨下面,然后训练病人以精神控制来操纵电脑屏幕上光标的移动。在未来三年时间里,脑机接口设备将得到进一步的改进,将来病人能够用大脑意识控制来完成更加复杂的任务,以及控制简单的机器人手臂。奠兰说,他的目标是开发一种可使用多年的植入装置,比如说10年,如此才具有临床手术上的实用意义。他说:“我们需要的是一种有效率达95%至99%的植入装置,并能持续使用10年。”

一些科学家对脑皮层电图是否能提供足以控制精细动作的信号持怀疑态度,比如说在锁眼中转动钥匙的动作等,但还有一些科学家正孜孜不倦地在进行这方面的探索研究,以期从脑波信号中获取更详细的信息。去年,约翰霍普金斯大学的生物医学工程师索米雅迪塔·阿查里雅和他的研究团队破解了单个手指弯曲和伸展运动的脑电波信号,这项研究结果发表在2010年8月的《神经工程学》杂志上。阿查里雅说,这表明经改进的脑皮层电图,或许可提供操纵开关或转动门把手等灵巧动作的大脑信号。

展望未来脑机接口技术前景看好

如果瘫痪患者能够学会使用机械臂来拿起早晨的一杯咖啡,那么接下来的问题就是,他们能否很好地控制“握住”杯子的力道呢?机械臂用的劲如果大一些,泡沫塑料的杯子可能会碎裂,杯子中的咖啡就会流光。

“对于假肢技术来说,其灵活性越好,对传感功能的要求也就更高,使用者才能对拿取的东西有更真实的感觉,”谢诺伊说。

要掌握好力道的大小,就要让患者产生较为真实的感官感觉,脑机接口技术需要拥有一种反馈系统,即将从外部获得的感官信号反馈到患者大脑中。一些研究者已经在进行将电流信号反馈到大脑中的初步尝试,但谢诺伊说道,这种方法的问题是,发送到大脑中的电流信号会同时激活许多细胞,而不仅仅是目标细胞。

谢诺伊说:“将脑波电流信号反馈到大脑中,就像进入一个有着众多学生的教室,教室里的每个学生都代表了一个不同的神经元,如果你想对其中一个学生说话,你就得大声喊叫才行,”谢诺伊与斯坦福大学的卡尔·迪赛罗斯一起,用光遗传学技术将感光蛋白质注入猴子的目标神经元,当假肢末端的传感器与咖啡杯接触时,发出的信号就会使这些神经元的光源亮起来,许多神经元都会沐浴在这片光亮中,但只有那些做了标记的神经元才会做出回应。信息能够反馈回大脑来是一个大好消息,谢诺伊说道,因为它提供了与特定神经元“对话”的一种途径。

在寻求将信号反馈回大脑的方法中,谢诺伊的研究小组不是唯一做出这种努力的。杜克大学神经生物学家米格尔·尼古莱利斯正在寻求某种方法,将电脑屏幕上物体纹理的感觉传回到大脑中对感官信息进行处理的部分,这种技术将使患者在用大脑意识控制假肢时,产生更为真实的触感等感官感觉。

尼古莱利斯的实验室创造了一种像衣服一样的机器人“外骨骼”,穿上它,失去行动能力的瘫痪病人就能再次自由活动。而如果能将触觉等感官信息反馈回大脑,穿上这种“外骨骼衣服”的患者在走路时就能真切地感觉到坚实的地面,产生一种很真实的脚踏实地的感觉。恢复活动能力的患者很需要这种感官上的感觉。

奠兰说,随着脑机接口技术变得越来越安全,设备越来越袖珍化,有一天它会像贴在你耳边的无线通信设备“蓝牙”一样普通,届时,即使是非残障人士也会迷上这种脑机接口技术,用大脑意识的力量去控制电脑、iPad或其他通讯和娱乐设备。目前,一家日本公司设计了一种“猫耳”,声称根据头皮表面反馈来的大脑信息可读取一个人的情绪。

此外,家用器具有可能将成为脑机接口技术的下一个发展目标。“脑机接口技术发展到某个程度,当你走进屋子里准备开灯时,甚至不用动手去按开关,”莫兰说,“你所要做的就是在脑子里想着‘开灯’,然后灯就亮了。”

脑机接口技术的未来前景令人懂憬。幻想变现实,梦想能成真,“心想事成”不再是幻想,也不再是梦想。

数字孪生脑成功模拟大脑后会怎样

可以用它整合各类生物脑研究结果,还可以揭示脑机理、启发类脑智能、解锁所有和脑有关的疾病,未来还将会让人工智能迈上新的台阶。

大脑是由不同功能子区域交互构成的复杂动力系统,分布于多脑区的神经网络可以实现脑功能。通过建模和仿真揭示大脑的基本工作原理,可以有效连接神经生物学的行为与认知,在探究脑功能机制中占据重要地位。在脑系统层面建立高精度的数字孪生脑模型,不仅可以整合各类生物脑研究结果,还可把解剖式生物学研究的断面脑变成生动的动态脑和工作脑。未来,DTB有望在脑机接口、注意机制、自闭症和癫痫脑疾病调控等方面的研究中发挥重要作用。